Construction of spherical harmonics and Clebsch–Gordan coefficients
نویسندگان
چکیده
منابع مشابه
Construction of SO(5)⊃ SO(3) spherical harmonics and Clebsch-Gordan coefficients
The SO(5)⊃ SO(3) spherical harmonics form a natural basis for expansion of nuclear collective model angular wave functions. They underlie the recently-proposed algebraic method for diagonalization of the nuclear collective model Hamiltonian in an SU(1, 1)× SO(5) basis. We present a computer code for explicit construction of the SO(5)⊃ SO(3) spherical harmonics and use them to compute the Clebsc...
متن کاملEstimating Illumination Parameters Using Spherical Harmonics Coefficients in Frequency Space
An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps: first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by ...
متن کاملKernels of Spherical Harmonics and Spherical Frames
Our concern is with the construction of a frame in L 2 (S) consisting of smooth functions based on kernels of spherical harmonics. The corresponding decomposition and reconstruction algorithms utilize discrete spherical Fourier transforms. Numerical examples connrm the theoretical expectations. x1. Introduction Traditionally, wavelets were tailored to problems on the Euclidean space IR d. Howev...
متن کاملSpherical Harmonics
5 Spherical Harmonics 7 5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2.1 Harmonic expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملTensor Spherical Harmonics and Tensor Spherical Splines
In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor elds are investigated and a decomposition formula is described. It is pointed out that the decomposition formula is of importance for the spectral analysis of the gra-vitational tensor in (spaceborne) gradiometry. Tensor spherical harmonics are introduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Physics Communications
سال: 2009
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2008.12.039